

Original Article

Library Automation Systems Migrations: Enhancing Service Quality and Efficiency in Engineering Colleges in Pune region

Jawed K. Shaikh¹, Dr. Anupam Saigal²

¹Research Schooler, Sunrise University, Alwar, Rajasthan

²Assistant Professor, Sunrise University, Alwar, Rajasthan

Abstract

Manuscript ID:
RIGJAAR-2025-020720

ISSN: 2998-4459
Volume 2
Issue 7
Pp.99-104
July 2025

Submitted: 07 June 2025
Revised: 21 June 2025
Accepted: 11 July 2025
Published: 31 July 2025

Correspondence Address:
Jawed K. Shaikh
Research Schooler, Sunrise
University, Alwar, Rajasthan
Email: jawed22@gmail.com

Quick Response Code:

Web. <https://rlgjaar.com>

DOI: 10.5281/zenodo.17733377

DOI Link:

<https://doi.org/10.5281/zenodo.17733377>

Creative Commons

The automation of libraries has gradually become a necessary aspect of the way libraries operate in modern colleges, particularly in engineering institutes. The amount of information flowing into and out of these colleges daily is very high; therefore, they require systems that can handle this information quickly without causing confusion. This study is a close examination of the transformation process of old systems to new integrated systems in colleges that use older library management systems. This demonstrates why this change is required and identifies widespread problems. The issues that arise during switching also cover various library software products, both commercial and open-source, such as SLIM, AutoLib, Koha, and Evergreen. The change actually took place on the ground in a variety of engineering colleges in Maharashtra. Based on these cases, this paper identifies some of the simplistic things that would facilitate migration effortlessly, such as planning, maintaining clean data, properly training the staff, and being ready to lend a hand once issues arise. These aspects are easier to manage when libraries can easily offer their resources to students and staff. Digital change has generally taken up software migration as a significant aspect of change at any institution. It is the process of transferring applications, databases, and other digital content to another system. Old systems cannot last forever because of the ever-improving technology.

Keywords: Library automation, LMS Migration, ILS, Open-source software, Proprietary Software, Engineering colleges, system integration, Library management Software.

Introduction

Automation of library systems in learning institutions has undergone massive changes over the past decades. Libraries are no longer archives of books and journals, but living systems that provide access to a broad array of scholarly resources and services. Engineering colleges, which are highly reliant on technological learning and research, require a robust and scalable framework that can effectively process large amounts of educational information, material, and digital resources.

The traditional Library Management System (LMS), specifically software available as proprietary software, will barely be able to support the increasing demands of contemporary educational environments. With outdated systems that are inefficient, there is a great desire for most libraries to change to new and more flexible systems. Even though this migration is potentially huge with its high functionality and user experience, it contains many challenges related to data compatibility, system integration, personalization of the staff, and cost-effectiveness of the procedure.

In this paper, we discuss the migration process in Integrated Library Systems (ILS) in engineering colleges. We discuss the key reasons for migration, issues that libraries must grapple with as the process is carried out, and available technological solutions. The paper will also discuss how these migrations have impacted the effectiveness and availability of library services and the best suitable practice to make the transition successful and smooth. The primary solution to such a problem is to integrate library management systems (ILMS), which have enhanced the effectiveness of operations and user experience, in addition to handling data.

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article:

Shaikh, J. K., & Saigal, A. (2025). Library Automation Systems Migrations: Enhancing Service Quality and Efficiency in Engineering Colleges in Pune region. Royal International Global Journal of Advance and Applied Research, 2(7), 99–104. <https://doi.org/10.5281/zenodo.17733377>

An ILMS can ease the process of working in libraries and service provision when it is used to automate processes such as cataloguing, acquisitions, circulation, and integration of digital resources. ILMS application in engineering colleges where availability of up-to-date technical information is key, implementation of ILMS is not only a technological modernization, but also a competitive and successful institutional strategy in terms of academic competitiveness. However, the implementation of ILMS in the area of Pune faces a number of issues, one of which is the limitation of finances, the varying level of infrastructure, and the opposition of the library staff, all of which contribute to ineffective implementation.

Literature Review

Kamble, P. S., & Patil, A. P. (2024) In their research paper, "Library automation in academic institutions," migrating to a modern Integrated Library System ILS provides numerous benefits for academic institutions, particularly engineering colleges. Offers enhanced search functionality, improved cataloguing, and better resource management tools.

Ossendrijver, Rick and other (2022) in their research paper namely "Towards Automated Library Migrations with Error Prone and Refaster" library migrations in software development in maintaining codebase relevance, addressing library obsolescence, and ensuring compatibility with new technologies.

Harisanty, D., Shafira, E., & Isbandy, S. H. (2020) in their paper namely "Library automation system in Library University of Sebelas Maret Indonesia: Migration from UNSLA to SLiMS" library particularly in handling growing user needs and managing increasingly complex data. A study at the University of Sebelas Maret (UNS) Library highlighted the challenges and benefits encountered during this migration.

Asid, B. A. (2020). Present in his research paper namely, "Library automation system of academic libraries: A multicultural paradigm" integration of automated systems helps libraries manage an ever-growing volume of resources and meet the increasing demands of users. In Zamboanga, academic libraries have adopted automation to improve their services. It is from cataloguing and circulation to providing access to digital resources, transformation from traditional methods to automated systems not only reduces the workload of librarians but also supports a more efficient, user-friendly environment for students and staff.

Wickes, A. (2018) In his paper present, "Why not custom KBART? Converging trends in automation and migration, the rapid evolution of library automation systems has reshaped how academic institutions manage their collections and provide services to users. The meaning of the Knowledge Base and Related Tools KBART within libraries. This article discusses the increasing need for customized KBART files that reflect institutional holdings, driven by evolving library purchasing models, such as demand-driven acquisition and title-by-title purchasing.

Singh, V. (2017) Present paper "Open-source integrated library systems: A case study of Koha and Evergreen" Open-source LMS such as Koha and Evergreen has become the

preferred choice among academic institutions. This includes engineering colleges owing to their **cost-effectiveness** and **flexibility**. These systems offer significant advantages over proprietary systems, particularly for libraries with budget constraints. OSS eliminates costly licensing fees and makes it easier for libraries to allocate resources to other areas such as staff training, system customization, and ongoing maintenance. Moreover, the flexibility of open-source systems allows libraries to tailor their LMS to meet specific needs, from cataloguing technical standards to supporting complex research workflows. As universities and colleges increasingly adopt open-source solutions, they also benefit from large communities.

Breeding, M. (2016) present his paper "The evolution of library automation" library shift manual cataloguing systems to fully automated Library Management Systems LMS, represents a significant transformation in how libraries operate. In the early stages, libraries employed card catalogues and paper-based systems, which became increasingly inefficient as academic needs grew. The introduction of integrated library systems ILS allowed libraries to streamline their operations, automating cataloguing, circulation, and user management tasks.

Jost, R. M. (2009). The present research paper "Integrated library system challenges and implications for migration" completed migration to a new **LMS** depends not only on technical expertise but also on the active involvement of **library staff**. According to the author, staff involvement during migration helps ensure that the new system meets the specific needs of the library, users, and staff. Staff members need to be trained on the functionalities, new systems, and handling of day-to-day library operations using the new LMS.

Definition of Library Automation:

According to the Encyclopedia of Library and Information Sciences, "Library Automation is the use of automatic and semiautomatic data processing machines to perform traditional library activities such as acquisitions, cataloguing, and circulation. These activities are not necessarily performed in traditional ways; the activities themselves are those traditionally associated with libraries; library automation may thus be distinguished from related fields such as information retrieval, automatic indexing and abstracting, and automatic textual analysis". Also, "automation is the technology concerned with the design and development of process and system that minimize the necessity of human intervention in operation" (Kent, 1977).

Defenestration of Migration:

The term "defenestration," which literally means the act of throwing someone or something out of a window, is not a standard term used in the context of library software migration, which refers to the process of transitioning data and operations from one system to another.

Challenges in Library Automation System Migration

The migration from legacy systems to modern ILS can be a daunting task. Several challenges are encountered, including, but not limited to,

- Data Compatibility:** Legacy systems often use proprietary data formats that may not be directly compatible with new systems. Data migration requires careful mapping and conversion to ensure there is no loss of bibliographic or patron data during the transition.
- System Integration:** New systems must integrate seamlessly with the existing infrastructure, such as digital repositories, resource-sharing networks, and authentication services. Disruption in integration can lead to downtime or accessibility issues.
- Staff Resistance and Training:** Library staff accustomed to old systems may resist the transition to a new system. Staff training is essential to ensure that they can use the new system efficiently and make full use of its features.
- Cost:** While open-source systems have low upfront costs, the migration process itself can incur significant expenses in terms of time, labor, and technical support. Ongoing maintenance and updates can also add to overall costs.

Benefits of Migration

Despite the challenges, migrating to a new ILS offers substantial benefits:

- Enhanced Efficiency:** Automation increases operational efficiency, enabling libraries to handle a growing number of users and resources without additional staff.
- Cost Savings:** Open-source systems significantly reduce licensing fees and software maintenance costs.
- Improved User Experience:** Modern systems offer more intuitive user interfaces, which improve the user experience for both students and faculty.
- Scalability:** Newer systems are better suited to handling large volumes of data, which is especially important in engineering colleges that require robust solutions for managing large academic resources.

Research Objectives

- Investigate the Driving Factors behind LMS Migration in Engineering Colleges**
- Analyze the Challenges in LMS Migration**

- Technological Advancements:** Migration is driven by the need for scalable integrated systems that are capable of managing digital resources and technical content.
- Cost Efficiency:** Engineering colleges are adopting open-source systems such as Koha and Evergreen for their cost-effectiveness compared with proprietary systems.
- Improved User Experience:** The need to provide students and faculty with better access to resources, enhanced search functionalities, and remote access to library materials.

- System Integration:** Ensuring new LMS integrate seamlessly with existing institutional systems (e.g., student information systems and learning management systems).
- Staff Training:** Overcoming resistance and ensuring that staff are properly trained to use the new system effectively.
- Provide Recommendations for Successful LMS Migration**

- Comprehensive Planning:** Ensuring a detailed migration roadmap with proper data mapping and **contingency plans** to address potential issues.
- Stakeholder Engagement:** Engaging library staff, IT personnel, and faculty early in the migration process for better adoption and smoother implementation.
- Post-Migration Optimization:** Establishing **evaluation frameworks** and continuous improvement processes to ensure that the system meets the evolving needs of the institution.

Research Objectives and Methodology

The objectives of this study are:

- To investigate the driving factors behind the migration of LMS in engineering colleges.
- To identify and analyze the challenges faced during the migration process.
- To offer recommendations for ensuring the success of LMS migration.

- Investigate the Driving Factors Behind LMS Migration in Engineering Colleges**
- Analyze the Challenges in LMS Migration**

- Data Migration:** Addressing the complexities of transferring legacy data to modern systems without loss or corruption.
- System Integration:** Ensuring new LMS integrate seamlessly with existing institutional systems (e.g., student information systems and learning management systems).
- Staff Training:** Overcoming resistance and ensuring that staff are properly trained to use the new system effectively.

3. Provide Recommendations for Successful LMS Migration

- **Comprehensive Planning:** Ensuring a detailed migration roadmap with proper data mapping and contingency plans to address potential issues.
- **Stakeholder Engagement:** Engaging library staff, IT personnel, and faculty early in the migration process for better adoption and smoother implementation.
- **Post-Migration Optimization:** Establishing evaluation frameworks and continuous improvement processes to ensure that the system meets the evolving needs of the institution.

Methodology:

This study adopts a mixed-methods approach, combining qualitative case studies of engineering colleges that have migrated to newer ILS with a survey of library professionals to assess their experiences and challenges during migration. Qualitative case studies provide detailed insights into the process and outcomes of migration, while survey data help quantify the challenges and benefits perceived by staff members at the time of migration.

1. Initial Planning and Needs Assessment

The first step in the migration process was to clearly define the needs of the library and identify the reasons for migration. Library staff, IT professionals, and stakeholders should come together to assess the shortcomings of the current system and establish goals for new software. This involves asking critical questions such as:

- What are the specific challenges with the current system?
- What new features or capabilities are needed?
- What budget is available for the migration?

At this stage, the library should also decide whether to migrate to a commercial proprietary system or open-source software such as Koha or Evergreen. This decision depends on factors such as cost, customization, and specific needs of the library's patrons.

2. Choosing the Right Software

Once the requirements and objectives are clear, the next step is to evaluate and select the most suitable library management software. The factors to consider during the selection process include the following.

- **Cost:** For instance, open-source software offers a more affordable option than commercial systems, although there may still be costs for installation, customization, and ongoing support.
- **Features:** The new LMS should meet the specific requirements of the library, such as the ability to handle large volumes of data, integration with existing campus systems, and offer user-friendly interfaces for patrons.
- **Scalability:** It is important to choose software that can meet the library's needs over time, especially in institutions such as universities or research centers with expanding resource databases.

- **Support and Training:** Consider the level of support offered by the software provider and the ease of staff training in the new system.

3. Data Migration

After selecting the software, the next phase involves migrating the library's existing data to the new system. This is often the most critical and challenging part of the process. The migration team must carefully plan how to transfer bibliographic records, patron information, transaction history, and other data from the old system to the new system.

During this stage:

- **Data Mapping:** Existing data must be mapped from the old system to the new system format. This includes ensuring that all fields, such as author names, book titles, and borrower details, are translated accurately.
- **Data Cleansing:** Any redundant, outdated, or incomplete data should be cleaned or purged to ensure that the new system contains only accurate and high-quality information.
- **Testing:** It is vital to test the migration process by running smaller data sets before transferring everything fully. Testing ensures that the data appear correctly in the new system and functions, as expected.

4. Customization and Integration

Once the data are transferred, the new system must be customized to meet the specific needs of the library. This may involve setting up user roles, configuring cataloging workflows, and customizing user interfaces to ensure that the system is intuitive for both the library staff and patrons.

Additionally, the new LMS should be integrated with other existing systems such as campus management system, learning management system (LMS), or e-resource platforms. These integrations allow seamless communication between systems and provide a unified experience for library users.

5. Staff Training

A crucial part of the migration process is to ensure that library staff are fully trained on how to use the new system. Proper training helps to prevent operational disruptions and ensures that the staff can use the new software to its full potential. Training programs should be comprehensive and include the following.

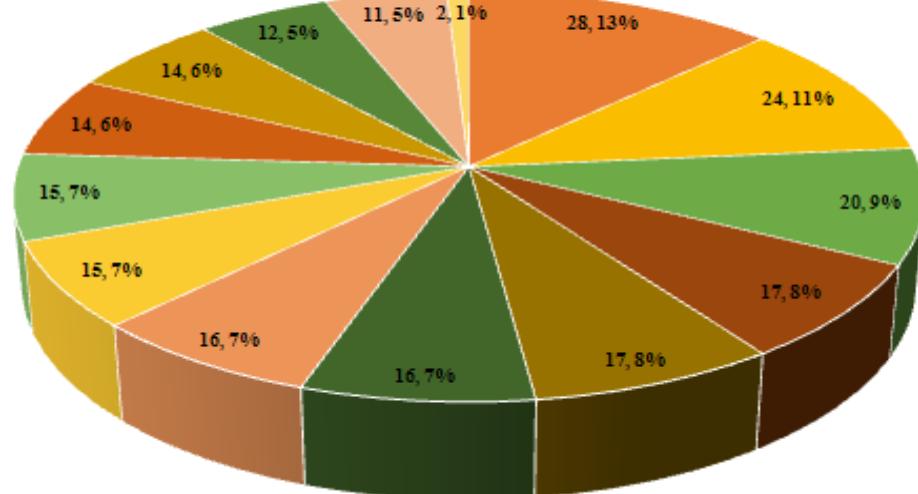
- Hands-on sessions for cataloguing, circulation, and report generation.
- Troubleshooting workshops to address common issues that may arise during daily use.
- Ongoing support after migration to ensure staff confidence and competence in the long-term.

6. Evaluation and Continuous Improvement

After migration, libraries should evaluate the performance of the new LMS and assess whether it meets the initial goals set out during the planning phase. This evaluation should focus on the following aspects.

- User satisfaction and ease of access to library resources.

- System stability and performance.
- The ability of staff to manage daily operations effectively.


Based on this evaluation, the library may need to adjust workflows or request further customization. Ongoing system updates, training, and support are key to maintaining optimal performance. In conclusion, the

migration of library management software is a challenging yet rewarding process that can significantly improve the efficiency of library operations and enhance user experience. With careful planning, thoughtful selection of the LMS, and thorough post-migration support, libraries can ensure smooth transition and reap the full benefits of modern library technology.

Factors were considered while migrating to present ILMS

Sr. No.	Factors considered while migrating data to present LMS.	Response	Percentage
1	Need for increasing functionality	28	
2	High ongoing maintenance cost	24	
3	Mandated by vendor agreement	20	
4	User complaints	17	
5	Earlier LMS was outdated	17	
6	Lack of confidence in former vendor	16	
7	Lack of database standards	16	
8	Mandated by Library administration	15	
9	Need for another hardware platform	15	
10	Additional updates not available	14	
11	Unresolved system problems	14	
12	Lack of support and service	12	
13	Earlier Vendor no longer available	11	
14	Other	2	
	Total	221	

Factors Considered While Migrating Data to Present LMS.

- Need for increasing functionality
- Mandated by vendor agreement
- Earlier LMS was outdated
- Lack of database standards
- Need for another hardware platform
- Unresolved system problems
- Earlier Vendor no longer available
- High ongoing maintenance cost
- User complaints
- Lack of confidence in former vendor
- Mandated by Library administration
- Additional updates not available
- Lack of support and service
- Other

Conclusion

Migrating to a modern ILS is more than just an operational upgrade for engineering colleges, but a vital step towards creating a more effective, accessible, and user-friendly academic environment. By adopting a modern library system, engineering colleges can ensure that students and faculty have quick and easy access to a wealth of resources, from digital content to specialized research materials. Migration allows for more organized and efficient management of resources, better integration with other systems, and an overall improved user experience. For engineering colleges, moving to a modern ILS is crucial for staying competitive in today's academic and research landscapes.

Acknowledgment

I express my sincere gratitude to Dr. Anupam Saigal, Assistant Professor, Sunrise University, Alwar, Rajasthan, for his valuable guidance, continuous support, and encouragement throughout the course of this research.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References:

1. Waray, P. (2025). Library automation in the present scenario of colleges: Processes, benefits and challenges. *International Journal of Modern Research Trends*, 10(5), 122-130.
2. Hosmani, V., & Maheswarappa, B. S. (2018). Status and problems of automation in college libraries, India: A review of literature. *Journal of Information Management and Educational Technology*, 2(1), 8-15.
3. Ghangare, M. B. (2025). Library automation techniques and tools through library software in India and abroad for higher education system. *International Journal of Advanced Research in Science, Technology & Innovation*, 11(9), 101-114.
4. Pujari, S. M. (2025). Use of ILMS and digital library software in academic libraries. *International Journal of Academic & Applied Research*, 5(6), 100-110.
5. Sharma, S. K. (2025). Adoption of library management software in public and academic libraries: Benefits and challenges. *Interdisciplinary Research in Library & Information Science*, 5(3), 45-60.
6. Pooja, B., Mathapati, D., Gangur, B., Madiwalar, A., & Patil, S. S. (2025). Automating libraries: The role of library management systems in modern library operations. *International Journal of Research in Library Sciences*, 11(3), 155-168.
7. Kamble, P. S., & Patil, A. P. (2024). Library automation in academic institutions: A case study of LMS migration. *Journal of Library Technology and Information Science*, 10(2), 45-56.
8. Nimborkar, S. P. (2024). Library automation in universities and college libraries in India and abroad. *ShodhKosh: Journal of Visual and Performing Arts*, 5(7), 325-333.
<https://doi.org/10.29191/shodhkosh.v5.i7.2024.2674>
9. Shivakumar, T. C., (2023). Status of library automation in engineering college libraries in Karnataka. *International Journal of Innovative Management*, 2(6), 22-31.
10. Ossendrijver, R., Schroevers, S., & Grelck, C. (2022, April). Towards automated library migrations with error prone and refaster. In *Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing* (pp. 1598-1606).
11. Albitar, S., & Khenchela, S. (2023). Library services platforms (LSP) and their impact on the future of automated systems. *Library Management Systems Review*, 12(1), 67-82.
12. Asid, B. A. (2020). Library automation system of academic libraries: A multicultural paradigm. *FIHRIS: Jurnal Ilmu Perpustakaan dan Informasi*, 15(2), 236-262. Retrieved from <https://journal.uin.ac.id/index.php/fihris/article/view/437>.
13. Wickes, A. (2018). Why not custom KBART? Converging trends of automation and migration. *Serials Review*, 44(4), 257-258. <https://doi.org/10.1080/00987913.2018.1583944>.
14. Harisanty, D., Shafira, E., & Isbandy, S. H. (2020). Library automation system in Library University of Sebelas Maret Indonesia: Migration from UNSLA to SLiMS. *Library Philosophy and Practice (e-journal)*, 4376. Retrieved from <https://digitalcommons.unl.edu/libphilprac/4376>.
15. Zimo, M. S. (2018). Considerations on migrating to an open-source integrated library system (Master's paper). University of North Carolina at Chapel Hill.
16. Barua, N. (2018). Issues and challenges in library system migration: A case study in India. *International Journal of Library & Information Science*, 7(2), 55-60.
17. Avery, J. M. (2016). Implementing an open source integrated library system (ILS) in a special-focus institution. *Digital Library Perspectives*, 32(4), 287-298.
18. Breeding, M. (2016). The evolution of library automation: From proprietary to open source. *Library Technology Reports*, 52(1), 1-19.
19. Singh, V. (2013). A case study of migration to an open-source ILS: Partnership among state libraries. *QQML Journal*, 1, 1-25.
20. Jost, R. M. (2009). Integrated library system challenges and implications for migration. *The Journal of Academic Librarianship*, 35(3), 230-238.