



**Original Article**

# First record of land flatworm *Dolichoplana striata* Moseley, 1877 from Bhiwandi, Maharashtra, India

Momin Heena<sup>1</sup>, Momin Shakir<sup>2</sup>

<sup>1</sup>Assistant Professor, Department of Zoology G.M. Momin Women's College, Bhiwandi, India

<sup>2</sup>Assistant Professor, Department of Zoology Ramnarain Ruia Autonomous College, Mumbai, India

## Abstract

**Manuscript ID:**  
RIGJAAR-2025-021102

**ISSN:** 2998-4459  
Volume 2  
Issue 11  
Pp. 4-8  
November 2025

**Submitted:** 06 Oct. 2025  
**Revised:** 11 Oct. 2025  
**Accepted:** 07 Nov. 2025  
**Published:** 30 Nov. 2025

**Correspondence Address:**  
Momin Shakir  
Assistant Professor,  
Department of Zoology  
Ramnarain Ruia Autonomous  
College, Mumbai, India  
Email:  
[mominshakir@ruiacollege.edu](mailto:mominshakir@ruiacollege.edu)  
Orcid Id: 0009-0009-6540-  
4587

Quick Response Code:



Web: <https://rlgjaar.com>



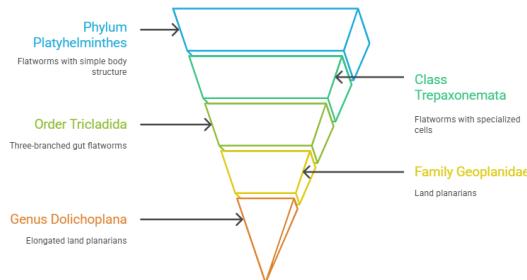
DOI:  
10.5281/zenodo.17669673

DOI Link:  
<https://doi.org/10.5281/zenodo.17669673>



Creative Commons




## Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

## How to cite this article:

Momin, H., & Momin, S. (2025). First record of land flatworm *Dolichoplana striata* Moseley, 1877 from Bhiwandi, Maharashtra, India. Royal International Global Journal of Advance and Applied Research, 2(11), 4-8. <https://doi.org/10.5281/zenodo.17669673>

### Taxonomic Classification of *Dolichoplana striata*



**Diagram 1** Taxonomic classification of *Dolichoplana striata*

Due to blind sac body pattern their mouth is also functions as an anus, is located near the mid-body on the ventral surface. A protruding muscular plicate pharynx acts as a feeding organ and is connected to a three-branched intestine (Esser 1981). The space between the organs is filled with parenchyma, and both circular and longitudinal muscles are present. They have a nervous system which consist of cerebral ganglion functions as a brain, providing innervation to a ladder-like nervous system. The elimination of fluid waste is carried out through a rudimentary protonephridial system (Esser 1981).

Due to their photo-negative behavior during daylight and their need for high humidity, land planarians favor dark, cool, and moist environments found beneath objects like rocks, logs, debris, or shrubs, as well as on the soil surface after significant rainfall. Although they can inhabit caves, their presence in rural areas is uncommon. Their movement and feeding activities primarily take place at night. Maintaining high humidity is crucial for their survival, as they can only withstand desiccation if the loss of water does not surpass 45 percent of their body weight. Land planarians are most prevalent during the spring and fall seasons (Choate and Dunn, 2024).

Fragmentation is the most preferred method of reproduction occurs primarily at the posterior end. The lateral margins constrict roughly 1 centimeter from the tip of the tail. Fractionation takes place when the posterior fragment attaches to the substrate while the parent worm retracts. The posterior fragment becomes immediately motile, and within a span of 7 to 10 days, a lightly pigmented head starts to develop. Each month, 1 to 2 fragments are released.

Eggs are bright red in color and are laid within cocoons measuring between 0.6 and 9.7 cm. The cocoons darken to black within 24 hours. Planarians typically emerge after about 21 days.

Land planarians consume earthworms, slugs, insect larvae, and even other planarians. They detect their prey using chemoreceptors situated in a single ciliated pit beneath the head or within a ciliated ventral groove. Prey that struggle are secured to the substrate and ensnared in the slimy secretions produced by the planarian. The pharynx extends from the mouth into the prey, allowing for ingestion. The food is broken down into small particles

before entering the gastrovascular cavity. Epithelial cells then engulf these food particles in an amoeboid manner, forming food vacuoles. Planarians can store food within their digestive epithelium and are capable of surviving for several weeks by gradually reducing their size without nourishment. When their reserves are depleted, they can metabolize their own tissues, including reproductive tissue, for sustenance.

Other animals seldom consume land planarians, as their surface secretions seem unpalatable, if not poisonous. Protozoans such as flagellates, ciliates, sporozoans, and nematodes have been identified within land planarians. Due to their cannibalistic tendencies, land planarians might pose a threat to themselves.

Planarians are aggressive predators of earthworms, with two species, *Bipalium kewense* and *Dolichoplana striata* Moseley, identified as nuisances in earthworm rearing beds in the southern United States (Hyman, 1951). Additionally, two other flatworm species, *Artioposthia triangulata* and *Geoplana sanguinea*, were unintentionally introduced to Ireland and England. These species have been reported to have the potential to eliminate entire earthworm populations on agricultural lands. In greenhouse settings, although some collectors worry that flatworms could damage plants, they are mostly seen as harmless.

The combination of a terrestrial habitat, an elongated shape, a narrow and inconspicuous head, along with a noticeable lateral eyespots near the front (fig. 4 (A & B) and 5 (C &D)), indicates that the land worm we observed definitely belongs to the family Geoplanidae; Rhynchoderminae (Jones, 2005; Sluys et al. 2009; De Luna and Bolls 2023). Its relatively large size, very elongated and flattened body with a moderately wide creeping sole, and the presence of four clearly visible dark stripes on the dorsal side suggest that it might fit into the genus *Dolichoplana* Moseley, 1877 (Jones, 2005; BopCo 2020). In terms of overall appearance (with a light olive-brown body featuring four dark stripes, where the two middle stripes are narrower than the others, and the lateral stripes are more prominently marked, while the ventral side is cream-colored with a pale grey creeping sole that has a slightly darker grey fine midline (De Luna & Boll, 2023)), our specimen closely resembles representatives of *Dolichoplana striata* Moseley, 1877. *Dolichoplana striata* can be recognized by its distinctive



external features (Álvarez-Presas et al. 2014; De Luna & Boll, 2023).

Despite a thorough search of the literature, this species has not been documented in Bhiwandi city, Maharashtra, India. Our finding is clearly the first for the country. The Zoological survey of India (Whitehouse, 1918) has provided detailed records of various species such as *Bipalium*, *Pelmatopalana*, *Dolichoplana*, and *Cotyloplana* from different regions of India, but there is no mention of this particular species.

*Dolichoplana striata* originates from the Indo-Malayan region (Jones, 2005; Sluys, 2016). The first record in Europe was found in Ireland (Anderson, 1986). Subsequently, this species was identified in Belgium, Jersey, Germany, the United Kingdom, Spain, and Italy (Jones, 2005; Álvarez-Presas et al., 2014; Mori et al., 2022;

Thunnissen et al., 2022), as well as in Austria, the Czech Republic, Finland, Norway, Poland, and Portugal (BopCo, 2020). Over the past five years, the number of *Dolichoplana striata* records has significantly increased in various parts of the world, particularly in Italy (Grozeva et al. 2013; Simov et al., 2012; Langourov et al., 2023), suggesting that this species requires more attention in the future. These invasive planarians need to be monitored regularly since they can spread quickly through the trade of exotic plants (Simov et al., 2025).

The presence of *Dolichoplana striata* in Bhiwandi city could be particularly interesting for the scientific community. It offers an opportunity to study its distribution throughout the city, its biology, and ecological role, and it can serve as a model organism for animal-based research, especially in the area of regeneration.



**Fig.1** *Dolichoplana striata*- specimen 1 observed at Asma complex, Bhiwandi



**Fig.2** *Dolichoplana striata*- specimen 2



**Fig.3** *Dolichoplana striata*- specimen 3 coated with sticky mucus



**Fig.4** *Dolichoplana striata*- specimen 4 resting in signature pose



**Fig.5.** *Dolichoplana striata* A-Ventral flat creeping sole B- inconspicuous head and 4 dark stripes



**Fig.6.** *Dolichoplana striata* C and D showing presence of eyespots

### Conclusion

The present study documents the first recorded occurrence of *Dolichoplana striata* Moseley, 1877 in Bhiwandi, Maharashtra, India, thereby contributing a significant addition to the limited records of terrestrial flatworms from the country. The specimens observed displayed all the characteristic morphological features of *D. striata*, including an elongated, flattened body, a pale olive-brown coloration with four distinct dorsal stripes, a well-defined creeping sole, and conspicuous lateral eyespots.

This finding is noteworthy not only because the species has been predominantly reported from European countries in recent decades, but also because its detection in India highlights the possibility of its wider, yet

undocumented, distribution across the subcontinent. Given the species' known predatory behavior, invasive potential, and ability to disperse through horticultural trade, its presence in Bhiwandi warrants continued monitoring and further ecological assessment.

The record provides an important baseline for future research on the biology, distribution, ecological role, and potential invasive impact of *D. striata* in India. It also underscores the need for more systematic surveys of terrestrial flatworm fauna across diverse habitats in the region. This first report may stimulate increased scientific attention toward these understudied invertebrates and promote further exploration into their taxonomy, behavior, and environmental significance.



## Acknowledgement

The authors are sincerely thankful to the principal of G. M. Momin Women's College. Bhiwandi for granting permission to carry out the work.

## Financial support and sponsorship

Nil.

## Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper

## References

1. Álvarez-Presas M., Mateos E., Tudó A., Jones H., Riutort M. 2014 Diversity of introduced terrestrial flatworms in the Iberian Peninsula: a cautionary tale. *PeerJ* 2: e430. <https://doi.org/10.7717/peerj.430>
2. Anderson R. 1986 The land planarians of Ireland (Tricladida: Terricola) a summary of distribution records. *The Irish Naturalists' Journal* 22 (4): 141–146.
3. BopCo 2020 Barcoding Facility for Organisms and Tissues of Policy Concern 2020 Factsheet on Dolichoplana striata; March 2020. In: Identification of Invasive Flatworm Species using DNA barcodes. BopCo, Belgium, <https://bopco.be/projects/flatworm-factsheets>. (accessed 20 October 2024).
4. Chaote P. M. and Dunn R. A. 2024 Land Planarians, Bipalium kewense Moseley and Dolichoplana striata Moseley (Tricladida: Terricola). University of Florida. IFAS extension. EENY-049: 1–5
5. De Luna M., Boll P.K. 2023 An annotated checklist of terrestrial flatworms (Platyhelminthes: Tricladida: Geoplanidae) from Mexico, with new records of invasive species from a citizen science platform and a new nomen dubium. *Zootaxa* 5297 (4): 518–532. <https://doi.org/10.11646/zootaxa.5297.4.3>
6. Esser RP. 1981. Land planarians (Tricladida: Terricola). Contribution no. 227, Bureau of Nematology, Florida Department of Agricultural and Consumer Services, Division of Plant Industry, Gainesville, Fl.
7. Grozeva S., Kuznetsova V., Simov N., Langourov M., Dalakchieva S. 2013 Sex chromosome pre-reduction in male meiosis of *Lethocerus patruelis* (Stål, 1854) (Heteroptera, Belostomatidae) with some notes on the distribution of the species. *Zookeys* 319: 119–135. <https://doi.org/10.3897/zookeys.319.4384>
8. Hyman LH. 1951. The Invertebrates: Platyhelminthes and Rhynchocoela the acoelomate Bilateria, McGraw-Hill, New York, USA. 550 p.
9. Jones H.D. 2005 Identifications of British land flatworms. *British Wildlife* 16 (3): 189–194.
10. Langourov M., Simov N., Abadjiev S. 2023 The invasion continues: *Hierodula tenuidentata* (Mantodea), *Leptoglossus occidentalis* (Hemiptera) and *Pelopidas thrax* (Lepidoptera) already on the island of Alonnisos. *Historia naturalis bulgarica* 44 (11): 137–144. <https://doi.org/10.48027/hnb.44.112>
11. Mori E., Magoga G., Mazza G. 2022 New records based on citizen-science report alien land planarians in the three remaining Italian regions and Pantelleria island, and first record of *Dolichoplana striata* (Platyhelminthes Tricladida Contineticola Geoplanidae) in Italy. *Redia* 105: 91–95. <https://doi.org/10.19263/REDIA-105.22.12>
12. Moseley HN. 1877. Notes on the structures of several forms of land planarians, with a description of two new genera and several new species, and a list of all species at present known. *Microscopy Journal* 7: 273–292.
13. Nikolay S., Simeon B., Vera A. (2025) A silent predator ad portas – *Dolichoplana striata* Moseley, 1877 (Platyhelminthes: Tricladida: Geoplanidae) recorded for the first time in Bulgaria. *Historia Naturalis Bulgarica* 47 (5): 125–130
14. Simov N., Langourov M., Grozeva S., Grdinarov D. 2012 New and Interesting Records of Alien and Native True Bugs (Hemiptera: Heteroptera) from Bulgaria. *Acta zoologica bulgarica* 64 (3): 241–252.
15. Simov N., Simeon B., Vera A., 2025 A silent predator ad portas – *Dolichoplana striata* Moseley, 1877 (Platyhelminthes: Tricladida: Geoplanidae) recorded for the first time in Bulgaria. *Historia Naturalis Bulgaria* (47):5 125–130.
16. Sluys R. 2016 Invasion of the flatworms. *American Scientist* 104: 288–295. <https://doi.org/10.1511/2016.122.288>
17. Sluys R., Kawakatsu M., Riutort M., Baguñà J. 2009 A new higher classification of planarian flat-worms (Platyhelminthes, Tricladida). *Journal of Natural History* 43 (29–30): 1763–1777. <https://doi.org/10.1080/00222930902741669>
18. Thunnissen N.W., de Waart S.A., Collas F.P.L., Jongejans E., Jan Hendriks A., van der Velde G., Leuven R.S.E.W. 2022 Risk screening and management of alien terrestrial planarians in The Netherlands. *Management of Biological Invasions* 13 (1): 81–100. <https://doi.org/10.3391/mbi.2022.13.1.05>
19. Whitehouse R H (1918). Indian land planarian: Record of Indian Museum. *ZSI*: XVI: 29–40.