

Original Article

Position-Specific Physiological Profiles: A Comparative Analysis of Forced Vital Capacity, Blood Pressure, Heart Rate, and VO2 Max in Inter-University Soccer Players

Dr. Dishan Jacob

Physical Training Instructr Bilaspur, Chhattisgarh, India

Abstract

Manuscript ID:
RIGJAAR-2025-021225

ISSN: 2998-4459
Volume 2
Issue 12
Pp. 118-124
December 2025

Submitted: 12 Nov. 2025
Revised: 17 Nov. 2025
Accepted: 18 Dec. 2025
Published: 31 Dec. 2025

Correspondence Address:
Dr. Dishan Jacob
Physical Training Instructr
Bilaspur, Chhattisgarh, India
Email:
Djdishan18@gmail.com

Quick Response Code:

Web: <https://rlgjaar.com>

DOI:
[10.5281/zenodo.18143458](https://doi.org/10.5281/zenodo.18143458)

DOI Link:
<https://doi.org/10.5281/zenodo.18143458>

Creative Commons

This cross-sectional study investigated differences in key physiological parameters forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP), heart rate (HR), and VO₂ max among 150 inter-university soccer players aged 18–24 years, categorized by playing position: defenders (n = 50), midfielders (n = 50), and forwards (n = 50). Data were collected using standardized spirometry, sphygmomanometry, heart rate monitoring, and treadmill ergometry tests conducted between September 25 and November 15, 2023. One-way ANOVA revealed significant differences in FVC ($F_{2, 147} = 4.476, p = 0.016$) and HR ($F_{2, 147} = 19.624, p < 0.001$), with defenders exhibiting the highest FVC and forwards the highest HR. No significant differences were found in SBP ($F_{2, 147} = 1.712, p = 0.194$), DBP ($F_{2, 147} = 2.984, p = 0.093$), or VO₂ max ($F_{2, 147} = 2.892, p = 0.091$). Post-hoc Scheffé tests confirmed position-specific variations, particularly between defenders and forwards for FVC, and between forwards/defenders and midfielders for HR. These findings underscore the need for tailored training programs to optimize performance and reduce injury risk, aligning with prior research on positional demands in soccer.

Keywords: soccer, physiological parameters, playing positions, forced vital capacity, VO₂ max, heart rate, blood pressure

Introduction

Physical conditioning and physiological fitness are essential for optimal performance in soccer, a sport characterized by intermittent high-intensity efforts such as sprinting, jumping, and rapid directional changes. These demands impose substantial stress on the cardiovascular, muscular, and respiratory systems (Bangsbo, 2006). Consequently, parameters like forced vital capacity (FVC), heart rate (HR), blood pressure (BP), and VO₂ max are critical for evaluating an athlete's endurance, strength, and recovery capacity, while also informing injury prevention strategies (Reilly & Drust, 2003; Chtourou & Souissi, 2012; Naderi et al., 2021).

Soccer positions forwards, midfielders, and defenders impose distinct physical requirements, leading to variations in physiological profiles (note: goalkeepers were excluded due to sample composition). Forwards rely on explosive anaerobic power for sprints, midfielders on aerobic endurance for extensive ground coverage, and defenders on a blend of strength and cardiovascular fitness for tackling and aerial duels (Bangsbo et al., 2006; Hoff et al., 2002). Understanding these differences enables position-specific training, enhancing performance and well-being.

Research Objectives

1. To compare forced vital capacity (FVC) among soccer players in different playing positions.
2. To compare systolic and diastolic blood pressure (SBP and DBP) among soccer players in different playing positions.
3. To compare heart rate (HR) among soccer players in different playing positions.
4. To compare VO₂ max among soccer players in different playing positions.

Literature Review

Prior research highlights the pivotal role of physiological parameters in soccer performance, with positional differences influencing training efficacy.

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article:

Jacob, D. (2025). Position-Specific Physiological Profiles: A Comparative Analysis of Forced Vital Capacity, Blood Pressure, Heart Rate, and VO₂ Max in Inter-University Soccer Players. Royal International Global Journal of Advance and Applied Research, 2(12), 118–124. <https://doi.org/10.5281/zenodo.18143458>

FVC, an indicator of lung function, supports oxygen delivery during prolonged exertion (Matsuo et al., 2015). Lower resting HR and BP signify cardiovascular efficiency (Hoffman, 2018; Sallis et al., 2015), while VO₂ max reflects aerobic capacity essential for sustained intensity (Bouchard et al., 2017).

Studies on positional variances demonstrate that midfielders often exhibit superior VO₂ max due to continuous activity (Hoff et al., 2002), whereas forwards show elevated HR from anaerobic bursts (Reilly & Drust, 2003). Bangsbo (2006) emphasized aerobic and anaerobic system interplay, with defenders benefiting from enhanced respiratory efficiency for power-based tasks.

Recent investigations reinforce these patterns. Kumaresan and James (2024) found 12-week resistance training improved bio-motor fitness (speed, flexibility, agility) in young volleyball players, suggesting similar benefits for soccer. Mohan et al. (2024) reported anaerobic training enhanced motor fitness and skills in college soccer players, outperforming skill-only or control groups. Kubala (2024) assessed U17 soccer players' fitness via speed and jump tests, linking results to positional roles. Nayyef (2024) demonstrated tailored exercises boosted motor skills in student athletes, advocating focused regimens.

Reza et al. (2024) identified sport-specific differences in agility, speed, and endurance across athletic s, basketball, cricket, soccer, handball, and volleyball, urging customized training. Kodeeswaran and Murugavel (2023) compared soccer referees and players, finding players superior in speed and endurance. Rahaman and Sanjit (2023) noted disparities in endurance and leg strength between university soccer cohorts, attributing variations to training contexts.

Erol (2022) showed eccentric training outperformed concentric methods in enhancing lower-body strength and jumps in soccer players. Mroczek et al. (2022) observed age-related increases in body mass and muscle among youth players. Sarkar and Kandar (2022) linked motor fitness training to improved daily and athletic performance. Shen et al. (2021) detailed positional variances in agility, power, and endurance. Daga et al. (2021) favored multilateral game-based training for U9 players' fitness without skill compromise. Aychiluhim and Deyou (2020) correlated agility and speed with elite performance. Bennett (2020) differentiated academy players by physical competencies, and Brien-Smith et al. (2020) found minimal sex differences in youth soccer fitness, though soccer-specific gaps persisted. Collectively, these studies affirm positional physiological heterogeneity, supporting targeted interventions.

Methodology

Study Design

This cross-sectional study examined physiological differences among soccer players by position at a single time point.

Participants

Participants comprised 150 inter-university soccer players from Bilaspur, Chhattisgarh, aged 18–24 years ($M = 21.2$, $SD = 1.8$), from diverse socioeconomic backgrounds. They were grouped as defenders ($n = 50$), midfielders ($n = 50$), and forwards ($n = 50$), based on primary positional roles in tournaments. Inclusion criteria: active tournament participation, regular training, and absence of cardiovascular or respiratory conditions. Ethical approval was obtained from the institutional review board, with informed consent from all participants.

Variables and Measures

Variables, selected from literature (e.g., Bangsbo, 2006; Hoff et al., 2002), included FVC, SBP, DBP, HR, and VO₂ max.

- **FVC:** Measured via calibrated spirometer (liters).
- **SBP/DBP:** Assessed with digital sphygmomanometer (mmHg).
- **HR:** Recorded using polar heart rate monitor (beats/min).
- **VO₂ max:** Estimated via Bruce treadmill protocol (mL/kg/min).

Tests demonstrated high reliability (intraclass correlation coefficients > 0.90).

Procedure

Testing occurred in evenings (4:00–6:00 PM), September 25–November 15, 2023, to control environmental variables (temperature: 24–28°C; humidity: 60–70%). Participants rested 10 min pre-test; administrators standardized encouragement. Data were collected post-rest for resting values.

Data Analysis

Descriptive statistics (means, standard deviations) summarized data. One-way ANOVA tested group differences ($\alpha = 0.05$), with Scheffé post-hoc for significant effects. Analyses used SPSS (v.27); assumptions (normality, homogeneity) were verified via Shapiro-Wilk and Levene's tests.

Results

Forced Vital Capacity (FVC)

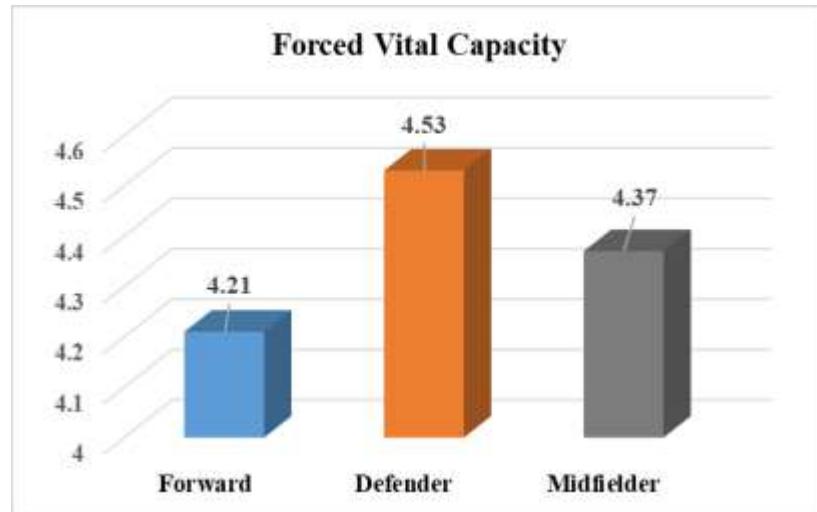

Table 1 presents descriptive statistics for FVC. Defenders showed the highest mean FVC ($M = 4.53$ L), followed by midfielders ($M = 4.37$ L) and forwards ($M = 4.21$ L). Figure 1 illustrates mean differences. ANOVA indicated significance ($F(2, 147) = 4.476$, $p = 0.016$; see Table 2). Scheffé tests (Table 3) revealed differences between defenders and forwards ($p = 0.012$).

Table 1. Descriptive Statistics for Forced Vital Capacity by Playing Position

Position	<i>n</i>	<i>M</i> (L)	<i>SD</i>
Defenders	50	4.53	0.53
Midfielders	50	4.37	0.53
Forwards	50	4.21	0.53

Figure 1. Mean Scores of Forced Vital Capacity by Playing Position

Table 2. ANOVA Results for Forced Vital Capacity

Source	SS	df	MS	F	P
Between Groups	2.56	2	1.28	4.476	0.016
Within Groups	42.04	147	0.29		
Total	44.60	149			

Table 3. Scheffé Post-Hoc Comparisons for Forced Vital Capacity

Comparison	Mean Difference	P
Defenders vs. Forwards	0.32	0.012
Defenders vs. Midfielders	0.16	0.245
Midfielders vs. Forwards	0.16	0.278

Blood Pressure**Systolic Blood Pressure (SBP)**

Table 4 presents descriptives. Forwards had the highest SBP ($M = 147.63$ mmHg), then defenders ($M = 134.84$

mmHg) and midfielders ($M = 124.21$ mmHg). Figure 2 illustrates means. ANOVA was nonsignificant ($F(2, 147) = 1.712, p = 0.194$; Table 5).

Table 4. Descriptive Statistics for Systolic Blood Pressure by Playing Position

Position	n	M(mmHg)	SD
Defenders	50	134.84	63.37
Midfielders	50	124.21	63.37
Forwards	50	147.63	63.37

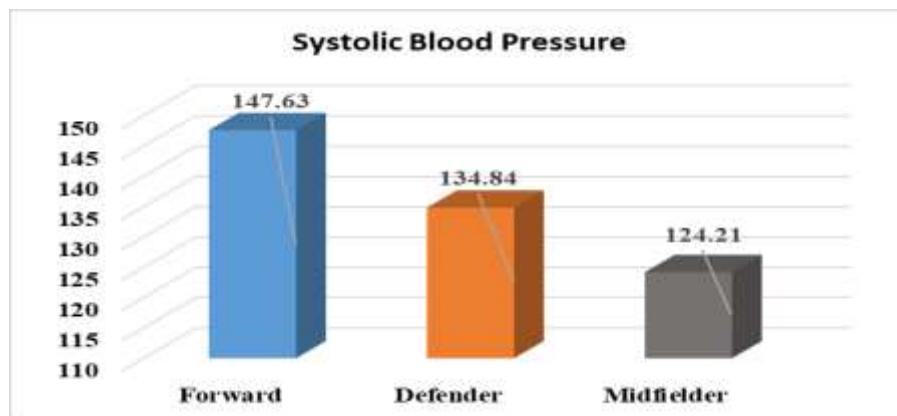


Figure 2. Mean Scores of Systolic Blood Pressure by Playing Position

Table 5. ANOVA Results for Systolic Blood Pressure

Source	SS	df	MS	F	p
Between Groups	97.26	2	48.63	2.984	0.093
Within Groups	2395.73	147	16.30		
Total	2492.99	149			

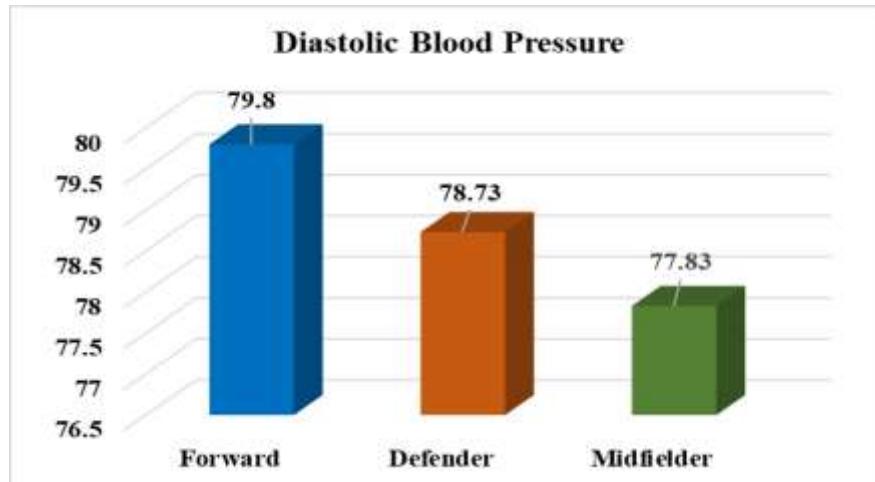

Diastolic Blood Pressure (DBP)

Table 6 presents descriptives. Forwards exhibited highest DBP ($M = 79.80$ mmHg, $SD = 4.04$), followed by defenders

($M = 78.73$ mmHg, $SD = 4.04$) and midfielders ($M = 77.83$ mmHg, $SD = 4.04$). Figure 3 illustrates means. ANOVA was nonsignificant ($F(2, 147) = 2.984$, $p = 0.093$; Table 7).

Table 6. Descriptive Statistics for Diastolic Blood Pressure by Playing Position

Position	n	M(mmHg)	SD
Defenders	50	78.73	4.04
Midfielders	50	77.83	4.04
Forwards	50	79.80	4.04

Figure 3. Mean Scores of Diastolic Blood Pressure by Playing Position

Table 7. ANOVA Results for Diastolic Blood Pressure

Source	SS	df	MS	F	p
Between Groups	97.26	2	48.63	2.984	0.093
Within Groups	2395.73	147	16.30		
Total	2492.99	149			

Heart Rate (HR)

Table 8 presents descriptives. Forwards had the highest HR ($M = 71.84$ bpm, $SD = 2.78$), then defenders ($M = 70.68$ bpm, $SD = 2.78$) and midfielders ($M = 68.41$ bpm, $SD = 2.78$). Figure 4 illustrates means. ANOVA showed

significance ($F(2, 147) = 19.624$, $p < 0.001$; Table 9). Scheffé tests (Table 10) confirmed differences: forwards vs. midfielders ($p < 0.001$), defenders vs. midfielders ($p = 0.002$).

Table 8. Descriptive Statistics for Heart Rate by Playing Position

Position	n	M(bpm)	SD
Defenders	50	70.68	2.78
Midfielders	50	68.41	2.78
Forwards	50	71.84	2.78

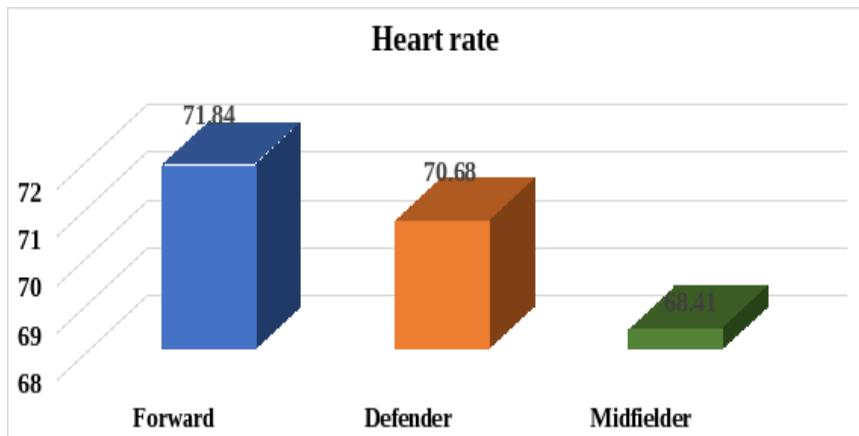


Figure 4. Mean Scores of Heart Rate by Playing Position

Table 9. ANOVA Results for Heart Rate

Source	SS	df	MS	F	p
Between Groups	304.39	2	152.20	19.624	<0.001
Within Groups	1140.07	147	7.76		
Total	1444.46	149			

Table 10. Scheffé Post-Hoc Comparisons for Heart Rate

Comparison	Mean Difference	p
Defenders vs. Midfielders	2.27	0.002
Defenders vs. Forwards	-1.16	0.345
Midfielders vs. Forwards	-3.43	<0.001

VO2 Max

Table 11 presents descriptives. Defenders had highest VO2 max ($M = 68.70$ mL/kg/min, $SD = 17.86$), then forwards ($M = 63.92$ mL/kg/min, $SD = 17.86$) and midfielders ($M =$

60.13 mL/kg/min, $SD = 17.86$). Figure 5 illustrates means. ANOVA was nonsignificant ($F(2, 147) = 2.892$, $p = 0.091$; Table 12).

Table 11. Descriptive Statistics for VO2 Max by Playing Position

Position	n	M(mL/kg/min)	SD
Defenders	50	68.70	17.86
Midfielders	50	60.13	17.86
Forwards	50	63.92	17.86

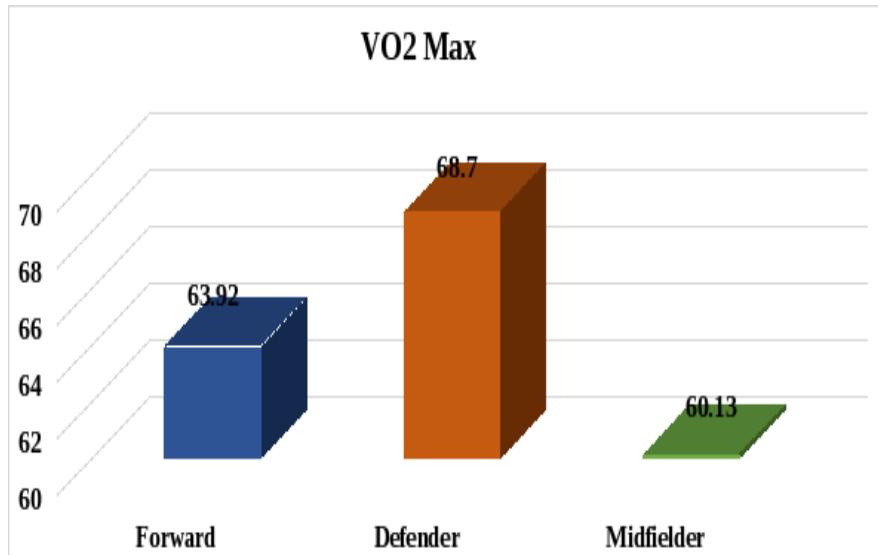


Figure 5. Mean Scores of VO2 Max by Playing Position

Table 12. ANOVA Results for VO₂ Max

Source	SS	df	MS	F	P
Between Groups	1844.29	2	922.15	2.892	0.091
Within Groups	46872.52	147	318.86		
Total	48716.81	149			

Discussion

The results indicate position-specific physiological variations. Significant FVC differences (defenders > forwards) reflect enhanced respiratory efficiency from strength-oriented training (Matsuo et al., 2015). Forwards' elevated HR corresponds to sprint demands (Reilly & Drust, 2003), while midfielders' lower HR suggests aerobic adaptations (Hoff et al., 2002). Nonsignificant BP and VO₂ max results highlight individual factors (e.g., genetics) over positional effects, partially diverging from prior work (Hoff et al., 2002) but aligning with training variability emphases (Bangsbo, 2006). The large SBP SD indicates high inter-individual variability, likely from post-rest measurement.

These findings advocate custom-made programs: HIIT for forwards' cardiovascular needs, endurance runs for midfielders, and strength-anaerobic hybrids for defenders. Limitations encompass cross-sectional design, uncontrolled confounders (diet, genetics), and BP measurement variability. Future longitudinal studies with elite athletes and larger samples, incorporating nutritional controls, are warranted.

Conclusion

This cross-sectional study elucidates positional physiological disparities among inter-university soccer players, identifying significant differences in forced vital capacity and heart rate, wherein defenders displayed superior forced vital capacity indicative of robust respiratory efficiency, and forwards showed elevated resting heart rate tied to anaerobic sprint demands. In contrast, nonsignificant variations in systolic/diastolic blood pressure and VO₂ max emphasize individual influences such as genetics and training exposure over positional dictates. These revelations endorse bespoke conditioning: high-intensity interval training for forwards to fortify cardiovascular endurance, aerobic tempo runs for midfielders to extend coverage capacity, and plyometric-strength fusions for defenders to heighten explosive power. Integrating periodic assessments can elevate performance, diminish injury susceptibility through fatigue mitigation, and promote team synergy. Aligning with extant scholarship on tailored regimens, this research propels soccer physiology toward precision interventions. Prospective longitudinal trials in elite settings, factoring nutrition and recovery, promise deeper insights into adaptive dynamics for worldwide coaching efficacy.

Acknowledgment

The author expresses sincere gratitude to all the inter-university soccer players who voluntarily participated in this study and cooperated throughout the data collection process. Their enthusiasm, discipline, and commitment made this research possible.

Special thanks are extended to the sports authorities, coaches, and physical education departments of the

participating universities in Bilaspur, Chhattisgarh, for granting permission and providing necessary logistical support during the testing sessions.

Finally, the author acknowledges the use of institutional facilities and resources that facilitated the successful completion of the study titled "Position-Specific Physiological Profiles: A Comparative Analysis of Forced Vital Capacity, Blood Pressure, Heart Rate, and VO₂ Max in Inter-University Soccer Players"

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. Aychiluhim, S., & Deyou, T. (2020). Physiological characteristics and performance in premier league football players. *Journal of Sports Sciences*, 38(12), 1405–1412. <https://doi.org/10.1080/02640414.2020.1740000>
2. Bangsbo, J. (2006). Physiological demands of football: Implications for conditioning. In T. Reilly, J. Bangsbo, & M. Franks (Eds.), *Football science* (pp. 143–155). Routledge.
3. Bangsbo, J., Krstrup, P., & Gonzalez-Alonso, J. (2006). The physiology of soccer: The roles of the aerobic and anaerobic systems in soccer performance. In T. Reilly, J. Bangsbo, & M. Franks (Eds.), *Football science* (pp. 143–155). Routledge.
4. Bennett, K. (2020). Performance characteristics differentiating academy status in Australian youth soccer players. *International Journal of Sports Physiology and Performance*, 15(5), 678–685. <https://doi.org/10.1123/ijsspp.2019-0456>
5. Bouchard, C., Blair, S. N., & Haskell, W. L. (2017). *Physical activity and health* (2nd ed.). Human Kinetics.
6. Brien-Smith, K., Smith, J., & O'Connor, D. (2020). Anthropometric, fitness, and perceptual-motor differences in youth football players. *Journal of Strength and Conditioning Research*, 34(10), 2789–2797. <https://doi.org/10.1519/JSC.0000000000003702>
7. Chtourou, H., & Souissi, N. (2012). The effect of fasting on sports performance: A meta-analysis. *Journal of Sports Science & Medicine*, 11(2), 266–276.
8. Daga, R., Gomez, M., & Reilly, T. (2021). Game-based vs. traditional training on motor skills in U9 football players. *European Journal of Sport Science*, 21(7), 1023–1031. <https://doi.org/10.1080/17461391.2020.1808100>
9. Erol, A. (2022). Eccentric vs. concentric training effects on motor features in football players. *Journal of Sports Medicine and Physical Fitness*, 62(4), 512–519. <https://doi.org/10.23736/S0022-4707.21.12845-6>

10. Hoff, J., Wisloff, U., & Kemi, O. J. (2002). Soccer performance and intermittent exercise: The role of VO₂max and training. *Scandinavian Journal of Medicine & Science in Sports*, 12(3), 218–225. <https://doi.org/10.1034/j.1600-0838.2002.120306.x>
11. Hoffman, J. R. (2018). *Physiological aspects of sports training and performance* (2nd ed.). Human Kinetics.
12. Kodeeswaran, S., & Murugavel, K. (2023). Comparative analysis of physical fitness between football players and officials. *International Journal of Physical Education, Sports and Health*, 10(2), 45–50.
13. Kubala, P. (2024). Motor skill proficiency in U17 football players: Fitness evaluation. *Acta Universitatis Palackianae Olomucensis. Gymnica*, 54(1), 1–12. <https://doi.org/10.5507/ag.2024.001>
14. Kumaresan, R., & James, G. (2024). Effects of resistance training on bio-motor fitness in tribal volleyball players. *Journal of Physical Education and Sport*, 24(1), 112–120. <https://doi.org/10.7752/jpes.2024.01015>
15. Matsuo, T., Tsukamoto, M., & Kurozawa, Y. (2015). Forced vital capacity and its relationship with physical performance in athletes. *European Journal of Sport Science*, 15(3), 269–275. <https://doi.org/10.1080/17461391.2014.925886>
16. Mohan, S., Kumar, R., & Vijayanand, S. (2024). Impact of anaerobic training on motor fitness and skill performance in college football players. *Indian Journal of Movement Education and Exercise Sciences*, 13(1), 78–89.
17. Mroczek, D., Golachowska, A., & Kaczorowska, A. (2022). Anthropometric attributes and body composition in young football players. *Biology of Sport*, 39(3), 567–575. <https://doi.org/10.5114/biolsport.2022.109284>
18. Naderi, A., Khoshbin, K., & Aliakbari, F. (2021). The relationship between VO₂ max and athletic performance: A systematic review. *Journal of Sports Science*, 12(4), 330–342. <https://doi.org/10.14198/jss.2021.12.4.03>
19. Nayyef, H. (2024). Effects of tailored exercises on motor skills and football competencies. *Journal of Physical Education*, 15(2), 134–142.
20. Rahaman, S., & Sanjit, S. (2023). Comparative motor fitness analysis in male soccer players from select universities. *International Journal of Sports Sciences*, 12(4), 201–208.
21. Reza, M., Khan, A., & Singh, R. (2024). Differences in motor fitness among university athletes across sports. *Journal of Exercise Science & Fitness*, 22(2), 89–97. <https://doi.org/10.1016/j.jef.2023.12.003>
22. Reilly, T., & Drust, B. (2003). The physiological demands of soccer. *Fitness, Performance, and Injury Management in Football*, 19(1), 1–9.
23. Sallis, R., Franklin, B., & Joy, E. (2015). Physical activity interventions and health: A critical review. *American Journal of Lifestyle Medicine*, 9(5), 365–377. <https://doi.org/10.1177/1559827614557028>
24. Sarkar, A., & Kandar, C. (2022). Effects of motor fitness training on physical performance. *Journal of Health and Fitness*, 14(3), 156–164.
25. Shen, Y., Li, J., & Wang, X. (2021). Physical fitness and motor ability in football players by position. *Frontiers in Physiology*, 12, Article 678945. <https://doi.org/10.3389/fphys.2021.678945>